Assumptions:
TeX:
\sum_{n=0}^{\infty} \frac{1}{{2 n \choose n}} {x}^{n} = \,{}_2F_1\!\left(1, 1, \frac{1}{2}, \frac{x}{4}\right) = \frac{1}{1 - u} + \frac{\sqrt{u} \operatorname{asin}\!\left(\sqrt{u}\right)}{{\left(1 - u\right)}^{3 / 2}}\; \text{ where } u = \frac{x}{4}
x \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left|x\right| \lt 4Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Binomial | Binomial coefficient | |
| Pow | Power | |
| Infinity | Positive infinity | |
| Hypergeometric2F1 | Gauss hypergeometric function | |
| Sqrt | Principal square root | |
| CC | Complex numbers | |
| Abs | Absolute value |
Source code for this entry:
Entry(ID("c9bcf7"),
Formula(Equal(Sum(Mul(Div(1, Binomial(Mul(2, n), n)), Pow(x, n)), Tuple(n, 0, Infinity)), Hypergeometric2F1(1, 1, Div(1, 2), Div(x, 4)), Where(Add(Div(1, Sub(1, u)), Div(Mul(Sqrt(u), Asin(Sqrt(u))), Pow(Sub(1, u), Div(3, 2)))), Equal(u, Div(x, 4))))),
Variables(x),
Assumptions(And(Element(x, CC), Less(Abs(x), 4))))