Fungrim home page

Fungrim entry: c93b81

absin(z)dz=cos(a)cos(b)\int_{a}^{b} \sin(z) \, dz = \cos(a) - \cos(b)
Assumptions:aC  and  bCa \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C}
\int_{a}^{b} \sin(z) \, dz = \cos(a) - \cos(b)

a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C}
Fungrim symbol Notation Short description
Integralabf(x)dx\int_{a}^{b} f(x) \, dx Integral
Sinsin(z)\sin(z) Sine
Coscos(z)\cos(z) Cosine
CCC\mathbb{C} Complex numbers
Source code for this entry:
    Formula(Equal(Integral(Sin(z), For(z, a, b)), Sub(Cos(a), Cos(b)))),
    Variables(a, b),
    Assumptions(And(Element(a, CC), Element(b, CC))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC