Assumptions:
TeX:
\psi^{(m)}\!\left(z\right) = {\left(-1\right)}^{m + 1} \int_{0}^{\infty} \frac{{t}^{m} {e}^{-z t}}{1 - {e}^{-t}} \, dt
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) > 0 \;\mathbin{\operatorname{and}}\; m \in \mathbb{Z}_{\ge 1}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| DigammaFunction | Digamma function | |
| Pow | Power | |
| Integral | Integral | |
| Exp | Exponential function | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| Re | Real part | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("c89abc"),
Formula(Equal(DigammaFunction(z, m), Mul(Pow(-1, Add(m, 1)), Integral(Div(Mul(Pow(t, m), Exp(Neg(Mul(z, t)))), Sub(1, Exp(Neg(t)))), For(t, 0, Infinity))))),
Variables(z, m),
Assumptions(And(Element(z, CC), Greater(Re(z), 0), Element(m, ZZGreaterEqual(1)))))