Fungrim home page

Fungrim entry: c77f9a

1zdz=log(z)+C\int \frac{1}{z} \, dz = \log(z) + \mathcal{C}
Assumptions:zC(,0]z \in \mathbb{C} \setminus \left(-\infty, 0\right]
\int \frac{1}{z} \, dz = \log(z) + \mathcal{C}

z \in \mathbb{C} \setminus \left(-\infty, 0\right]
Fungrim symbol Notation Short description
ComplexIndefiniteIntegralEqualf(x)dx=g(x)+C\int f(x) \, dx = g(x) + \mathcal{C} Indefinite integral, complex derivative
Loglog(z)\log(z) Natural logarithm
CCC\mathbb{C} Complex numbers
OpenClosedInterval(a,b]\left(a, b\right] Open-closed interval
Infinity\infty Positive infinity
Source code for this entry:
    Formula(ComplexIndefiniteIntegralEqual(Div(1, z), Log(z), z)),
    Assumptions(Element(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC