Assumptions:
TeX:
\psi\!\left(1 + z\right) = -\gamma + \sum_{n=1}^{\infty} {\left(-1\right)}^{n + 1} \zeta\!\left(n + 1\right) {z}^{n}
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|z\right| < 1Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| DigammaFunction | Digamma function | |
| ConstGamma | The constant gamma (0.577...) | |
| Sum | Sum | |
| Pow | Power | |
| RiemannZeta | Riemann zeta function | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| Abs | Absolute value |
Source code for this entry:
Entry(ID("c76eaf"),
Formula(Equal(DigammaFunction(Add(1, z)), Add(Neg(ConstGamma), Sum(Mul(Mul(Pow(-1, Add(n, 1)), RiemannZeta(Add(n, 1))), Pow(z, n)), For(n, 1, Infinity))))),
Variables(z),
Assumptions(And(Element(z, CC), Less(Abs(z), 1))))