Assumptions:
TeX:
G_{2 k}\!\left(i \infty\right) = \lim_{\tau \to i \infty} G_{2 k}\!\left(\tau\right) = 2 \zeta\!\left(2 k\right) k \in \mathbb{Z}_{\ge 1}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
EisensteinG | Eisenstein series | |
ConstI | Imaginary unit | |
Infinity | Positive infinity | |
ComplexLimit | Limiting value, complex variable | |
RiemannZeta | Riemann zeta function | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("c6be24"), Formula(Equal(EisensteinG(Mul(2, k), Mul(ConstI, Infinity)), ComplexLimit(EisensteinG(Mul(2, k), tau), For(tau, Mul(ConstI, Infinity))), Mul(2, RiemannZeta(Mul(2, k))))), Variables(k), Assumptions(And(Element(k, ZZGreaterEqual(1)))))