Assumptions:
TeX:
\psi^{(m)}\!\left(z - n\right) = \psi^{(m)}\!\left(z\right) - {\left(-1\right)}^{m} m ! \sum_{k=1}^{n} \frac{1}{{\left(z - k\right)}^{m + 1}} m \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; z - n \notin \{0, -1, \ldots\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
DigammaFunction | Digamma function | |
Pow | Power | |
Factorial | Factorial | |
Sum | Sum | |
ZZGreaterEqual | Integers greater than or equal to n | |
CC | Complex numbers | |
ZZLessEqual | Integers less than or equal to n |
Source code for this entry:
Entry(ID("c687d6"), Formula(Equal(DigammaFunction(Sub(z, n), m), Sub(DigammaFunction(z, m), Mul(Mul(Pow(-1, m), Factorial(m)), Sum(Div(1, Pow(Sub(z, k), Add(m, 1))), For(k, 1, n)))))), Variables(m, z, n), Assumptions(And(Element(m, ZZGreaterEqual(0)), Element(z, CC), Element(n, ZZGreaterEqual(0)), NotElement(Sub(z, n), ZZLessEqual(0)))))