Assumptions:
TeX:
\left(-z\right)_{k} = {\left(-1\right)}^{k} \left(z - k + 1\right)_{k}
z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, k \in \mathbb{Z}_{\ge 0}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| RisingFactorial | Rising factorial | |
| Pow | Power | |
| CC | Complex numbers | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("c640bf"),
Formula(Equal(RisingFactorial(Neg(z), k), Mul(Pow(-1, k), RisingFactorial(Add(Sub(z, k), 1), k)))),
Variables(z, k),
Assumptions(And(Element(z, CC), Element(k, ZZGreaterEqual(0)))))