Assumptions:
TeX:
\left|\,{}_2F_1\!\left(a, b, c, z\right) - \sum_{k=0}^{N - 1} \frac{\left(a\right)_{k} \left(b\right)_{k}}{\left(c\right)_{k}} \frac{{z}^{k}}{k !}\right| \le \left|\frac{\left(a\right)_{N} \left(b\right)_{N}}{\left(c\right)_{N}} \frac{{z}^{N}}{N !}\right| \begin{cases} \frac{1}{1 - D}, & D < 1\\\infty, & \text{otherwise}\\ \end{cases}\; \text{ where } D = \left|z\right| \left(1 + \frac{\left|a - c\right|}{\left|c + N\right|}\right) \left(1 + \frac{\left|b - 1\right|}{\left|1 + N\right|}\right) a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; c \in \mathbb{C} \setminus \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|z\right| < 1 \;\mathbin{\operatorname{and}}\; N \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(c) + N > 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | Absolute value | |
Hypergeometric2F1 | Gauss hypergeometric function | |
Sum | Sum | |
RisingFactorial | Rising factorial | |
Pow | Power | |
Factorial | Factorial | |
Infinity | Positive infinity | |
CC | Complex numbers | |
ZZLessEqual | Integers less than or equal to n | |
ZZGreaterEqual | Integers greater than or equal to n | |
Re | Real part |
Source code for this entry:
Entry(ID("c60679"), Formula(Where(LessEqual(Abs(Sub(Hypergeometric2F1(a, b, c, z), Sum(Mul(Div(Mul(RisingFactorial(a, k), RisingFactorial(b, k)), RisingFactorial(c, k)), Div(Pow(z, k), Factorial(k))), For(k, 0, Sub(N, 1))))), Mul(Abs(Mul(Div(Mul(RisingFactorial(a, N), RisingFactorial(b, N)), RisingFactorial(c, N)), Div(Pow(z, N), Factorial(N)))), Cases(Tuple(Div(1, Sub(1, D)), Less(D, 1)), Tuple(Infinity, Otherwise)))), Equal(D, Mul(Mul(Abs(z), Add(1, Div(Abs(Sub(a, c)), Abs(Add(c, N))))), Add(1, Div(Abs(Sub(b, 1)), Abs(Add(1, N)))))))), Variables(a, b, c, z, N), Assumptions(And(Element(a, CC), Element(b, CC), Element(c, SetMinus(CC, ZZLessEqual(0))), Element(z, CC), Less(Abs(z), 1), Element(N, ZZGreaterEqual(0)), Greater(Add(Re(c), N), 0))))