The logarithmic gamma function
is a function of one complex variable . It satisfies
for real
and is defined on the complex plane through analytic continuation, with branch cuts on . An explicit construction uses 37a95a combined with 774d37 for analytic continuation. In general,
as the latter has an infinite set of branch cuts off the real line. The following table lists all conditions such that LogGamma(z) is defined in Fungrim.
|
Table data:
such that
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
LogGamma | Logarithmic gamma function | |
Log | Natural logarithm | |
Gamma | Gamma function | |
OpenClosedInterval | Open-closed interval | |
Infinity | Positive infinity | |
OpenInterval | Open interval | |
CC | Complex numbers | |
ZZLessEqual | Integers less than or equal to n | |
PowerSeries | Formal power series | |
RR | Real numbers |
Source code for this entry:
Entry(ID("c6038c"), SymbolDefinition(LogGamma, LogGamma(z), "Logarithmic gamma function"), Description("The logarithmic gamma function", LogGamma(z), "is a function of one complex variable", z, ".", "It satisfies", Equal(LogGamma(x), Log(Gamma(x))), "for real", Greater(x, 0), "and is defined on the complex plane", "through analytic continuation, with branch cuts on", OpenClosedInterval(Neg(Infinity), 0), ".", "An explicit construction uses", EntryReference("37a95a"), "combined with", EntryReference("774d37"), "for analytic continuation.", "In general,", NotEqual(LogGamma(z), Log(Gamma(z))), " as the latter has an infinite set of branch cuts off the real line.", "The following table lists all conditions such that", SourceForm(LogGamma(z)), "is defined in Fungrim."), Table(TableRelation(Tuple(P, Q), Implies(P, Q)), TableHeadings(Description("Domain"), Description("Codomain")), List(TableSection("Numbers"), Tuple(Element(z, OpenInterval(0, Infinity)), Element(LogGamma(z), OpenInterval(Decimal("-0.1215"), Infinity))), Tuple(Element(z, SetMinus(CC, ZZLessEqual(0))), Element(LogGamma(z), CC)), TableSection("Infinities"), Tuple(Element(z, Set(Infinity)), Element(LogGamma(z), Set(Infinity))), TableSection("Formal power series"), Tuple(And(Element(z, PowerSeries(RR, x)), Greater(SeriesCoefficient(z, x, 0), 0)), And(Element(LogGamma(z), PowerSeries(RR, x)))), Tuple(And(Element(z, PowerSeries(CC, x)), NotElement(SeriesCoefficient(z, x, 0), ZZLessEqual(0))), And(Element(LogGamma(z), PowerSeries(CC, x)))))))