References:
- http://mathworld.wolfram.com/PolyasRandomWalkConstants.html
TeX:
\theta_{3}\!\left(0 , \sqrt{6} i\right) = {\left(\frac{\sqrt{6}}{96 {\pi}^{3}} \frac{\Gamma\!\left(\frac{1}{24}\right) \Gamma\!\left(\frac{5}{24}\right) \Gamma\!\left(\frac{7}{24}\right) \Gamma\!\left(\frac{11}{24}\right)}{18 + 12 \sqrt{2} - 10 \sqrt{3} - 7 \sqrt{6}}\right)}^{1 / 4}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
JacobiTheta | Jacobi theta function | |
Sqrt | Principal square root | |
ConstI | Imaginary unit | |
Pow | Power | |
Pi | The constant pi (3.14...) | |
Gamma | Gamma function |
Source code for this entry:
Entry(ID("c60033"), Formula(Equal(JacobiTheta(3, 0, Mul(Sqrt(6), ConstI)), Pow(Mul(Div(Sqrt(6), Mul(96, Pow(Pi, 3))), Div(Mul(Mul(Mul(Gamma(Div(1, 24)), Gamma(Div(5, 24))), Gamma(Div(7, 24))), Gamma(Div(11, 24))), Sub(Sub(Add(18, Mul(12, Sqrt(2))), Mul(10, Sqrt(3))), Mul(7, Sqrt(6))))), Div(1, 4)))), References("http://mathworld.wolfram.com/PolyasRandomWalkConstants.html"))