Assumptions:
TeX:
P_{n}\!\left(z\right) = \frac{1}{{2}^{n}} \sum_{k=0}^{n} {{n \choose k}}^{2} {\left(z - 1\right)}^{n - k} {\left(z + 1\right)}^{k}
n \in \mathbb{Z}_{\ge 0} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| LegendrePolynomial | Legendre polynomial | |
| Pow | Power | |
| Binomial | Binomial coefficient | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("c5dd9b"),
Formula(Equal(LegendrePolynomial(n, z), Mul(Div(1, Pow(2, n)), Sum(Mul(Mul(Pow(Binomial(n, k), 2), Pow(Sub(z, 1), Sub(n, k))), Pow(Add(z, 1), k)), Tuple(k, 0, n))))),
Variables(n, z),
Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(z, CC))))