Assumptions:
TeX:
R_{-a}\!\left(\left[b_{1}, b_{2}, \ldots, b_{n}\right], \left[z_{1}, z_{2}, \ldots, z_{n}\right]\right) = \frac{1}{\mathrm{B}\!\left(a, c\right)} \int_{0}^{\infty} {t}^{a - 1} \prod_{k=1}^{n} {\left(1 + t z_{k}\right)}^{-b_{k}} \, dt\; \text{ where } c = -a + \sum_{j=1}^{n} b_{j}
a \in \mathbb{R} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \left(b_{k} \in \mathbb{R} \;\text{ for all } k \in \{1, 2, \ldots, n\}\right) \;\mathbin{\operatorname{and}}\; \left(z_{k} \in \mathbb{C} \setminus \left(-\infty, 0\right] \;\text{ for all } k \in \{1, 2, \ldots, n\}\right) \;\mathbin{\operatorname{and}}\; \sum_{k=1}^{n} b_{k} > a > 0Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonHypergeometricR | Carlson multivariate hypergeometric function | |
| BetaFunction | Beta function | |
| Integral | Integral | |
| Pow | Power | |
| Product | Product | |
| Infinity | Positive infinity | |
| Sum | Sum | |
| RR | Real numbers | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| Range | Integers between given endpoints | |
| CC | Complex numbers | |
| OpenClosedInterval | Open-closed interval |
Source code for this entry:
Entry(ID("c5d388"),
Formula(Equal(CarlsonHypergeometricR(Neg(a), List(b_(k), For(k, 1, n)), List(z_(k), For(k, 1, n))), Where(Mul(Div(1, BetaFunction(a, c)), Integral(Mul(Pow(t, Sub(a, 1)), Product(Pow(Add(1, Mul(t, z_(k))), Neg(b_(k))), For(k, 1, n))), For(t, 0, Infinity))), Def(c, Add(Neg(a), Sum(b_(j), For(j, 1, n))))))),
Variables(a, b_, z_, n),
Assumptions(And(Element(a, RR), Element(n, ZZGreaterEqual(1)), All(Element(b_(k), RR), ForElement(k, Range(1, n))), All(Element(z_(k), SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))), ForElement(k, Range(1, n))), Greater(Sum(b_(k), For(k, 1, n)), a, 0))))