Assumptions:
TeX:
f(\alpha) \text{ is holomorphic on } \alpha \in \mathbb{C} \setminus \left(-\infty, 0\right] \;\text{ for all } f \in \left\{\alpha \mapsto R_G\!\left(\alpha, y, z\right), \alpha \mapsto R_G\!\left(x, \alpha, z\right), \alpha \mapsto R_G\!\left(x, y, \alpha\right)\right\} x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
IsHolomorphic | Holomorphic predicate | |
CC | Complex numbers | |
OpenClosedInterval | Open-closed interval | |
Infinity | Positive infinity | |
CarlsonRG | Carlson symmetric elliptic integral of the second kind |
Source code for this entry:
Entry(ID("c56825"), Formula(All(IsHolomorphic(f(alpha), ForElement(alpha, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0)))), ForElement(f, Set(Fun(alpha, CarlsonRG(alpha, y, z)), Fun(alpha, CarlsonRG(x, alpha, z)), Fun(alpha, CarlsonRG(x, y, alpha)))))), Variables(x, y, z), Assumptions(And(Element(x, CC), Element(y, CC), Element(z, CC))))