Assumptions:
TeX:
L\!\left(s, \chi\right) = \frac{1}{{q}^{s}} \sum_{k=1}^{q} \chi(k) \zeta\!\left(s, \frac{k}{q}\right)
q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q} \;\mathbin{\operatorname{and}}\; s \in \mathbb{C} \setminus \left\{1\right\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| DirichletL | Dirichlet L-function | |
| Pow | Power | |
| Sum | Sum | |
| HurwitzZeta | Hurwitz zeta function | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| DirichletGroup | Dirichlet characters with given modulus | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("c31c10"),
Formula(Equal(DirichletL(s, chi), Mul(Div(1, Pow(q, s)), Sum(Mul(chi(k), HurwitzZeta(s, Div(k, q))), For(k, 1, q))))),
Variables(q, chi, s),
Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)), Element(s, SetMinus(CC, Set(1))))))