Assumptions:
TeX:
G_{2 k}\!\left(\tau\right) = \zeta\!\left(2 k\right) \sum_{\textstyle{\left(m, n\right) \in {\mathbb{Z}}^{2} \setminus \left\{\left(0, 0\right)\right\} \atop \gcd\left(m, n\right) = 1}} \frac{1}{{\left(m \tau + n\right)}^{2 k}} k \in \mathbb{Z}_{\ge 2} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
EisensteinG | Eisenstein series | |
RiemannZeta | Riemann zeta function | |
Sum | Sum | |
Pow | Power | |
ZZ | Integers | |
GCD | Greatest common divisor | |
ZZGreaterEqual | Integers greater than or equal to n | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("c1ffd4"), Formula(Equal(EisensteinG(Mul(2, k), tau), Mul(RiemannZeta(Mul(2, k)), Sum(Div(1, Pow(Add(Mul(m, tau), n), Mul(2, k))), ForElement(Tuple(m, n), SetMinus(Pow(ZZ, 2), Set(Tuple(0, 0)))), Equal(GCD(m, n), 1))))), Variables(k, tau), Assumptions(And(Element(k, ZZGreaterEqual(2)), Element(tau, HH))))