Assumptions:
TeX:
\operatorname{AnalyticContinuation}\!\left(\log\!\left(z\right), z, a, b\right) = \log\!\left(-z\right) - \pi i a \in \mathbb{C} \,\mathbin{\operatorname{and}}\, b \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \operatorname{Im}\!\left(a\right) \lt 0 \,\mathbin{\operatorname{and}}\, \operatorname{Im}\!\left(b\right) \gt 0 \,\mathbin{\operatorname{and}}\, \operatorname{Re}\!\left(a\right) \operatorname{Im}\!\left(b\right) - \operatorname{Re}\!\left(b\right) \operatorname{Im}\!\left(a\right) \lt 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Log | Natural logarithm | |
ConstPi | The constant pi (3.14...) | |
ConstI | Imaginary unit | |
CC | Complex numbers | |
Im | Imaginary part | |
Re | Real part |
Source code for this entry:
Entry(ID("c1bee1"), Formula(Equal(AnalyticContinuation(Log(z), z, a, b), Sub(Log(Neg(z)), Mul(ConstPi, ConstI)))), Variables(a, b), Assumptions(And(Element(a, CC), Element(b, CC), Less(Im(a), 0), Greater(Im(b), 0), Less(Sub(Mul(Re(a), Im(b)), Mul(Re(b), Im(a))), 0))))