Assumptions:
TeX:
\mathop{\text{Continuation}}\limits_{\displaystyle{z: a \rightsquigarrow b}} \, \log(z) = \log\!\left(-b\right) - \pi i a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Im}(a) < 0 \;\mathbin{\operatorname{and}}\; \operatorname{Im}(b) > 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(a) \operatorname{Im}(b) - \operatorname{Re}(b) \operatorname{Im}(a) < 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
AnalyticContinuation | Analytic continuation | |
Log | Natural logarithm | |
Pi | The constant pi (3.14...) | |
ConstI | Imaginary unit | |
CC | Complex numbers | |
Im | Imaginary part | |
Re | Real part |
Source code for this entry:
Entry(ID("c1bee1"), Formula(Equal(AnalyticContinuation(Log(z), For(z, a, b)), Sub(Log(Neg(b)), Mul(Pi, ConstI)))), Variables(a, b), Assumptions(And(Element(a, CC), Element(b, CC), Less(Im(a), 0), Greater(Im(b), 0), Less(Sub(Mul(Re(a), Im(b)), Mul(Re(b), Im(a))), 0))))