Assumptions:
TeX:
\lambda'(\tau) = \frac{2 i}{\pi} \left(\zeta\!\left(\frac{1}{2}, \frac{\tau}{2}\right) + 8 \zeta\!\left(\frac{1}{2}, 2 \tau\right) - 6 \zeta\!\left(\frac{1}{2}, \tau\right)\right) \lambda(\tau)
\tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ComplexDerivative | Complex derivative | |
| ModularLambda | Modular lambda function | |
| ConstI | Imaginary unit | |
| Pi | The constant pi (3.14...) | |
| WeierstrassZeta | Weierstrass zeta function | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("c18c95"),
Formula(Equal(ComplexDerivative(ModularLambda(tau), For(tau, tau)), Mul(Mul(Div(Mul(2, ConstI), Pi), Sub(Add(WeierstrassZeta(Div(1, 2), Div(tau, 2)), Mul(8, WeierstrassZeta(Div(1, 2), Mul(2, tau)))), Mul(6, WeierstrassZeta(Div(1, 2), tau)))), ModularLambda(tau)))),
Variables(tau),
Assumptions(Element(tau, HH)))