Fungrim home page

Fungrim entry: c10014

Π ⁣(n,m)=011(1nx2)1x21mx2dx\Pi\!\left(n, m\right) = \int_{0}^{1} \frac{1}{\left(1 - n {x}^{2}\right) \sqrt{1 - {x}^{2}} \sqrt{1 - m {x}^{2}}} \, dx
Assumptions:n(,1)  and  m(,1)n \in \left(-\infty, 1\right) \;\mathbin{\operatorname{and}}\; m \in \left(-\infty, 1\right)
\Pi\!\left(n, m\right) = \int_{0}^{1} \frac{1}{\left(1 - n {x}^{2}\right) \sqrt{1 - {x}^{2}} \sqrt{1 - m {x}^{2}}} \, dx

n \in \left(-\infty, 1\right) \;\mathbin{\operatorname{and}}\; m \in \left(-\infty, 1\right)
Fungrim symbol Notation Short description
EllipticPiΠ ⁣(n,m)\Pi\!\left(n, m\right) Legendre complete elliptic integral of the third kind
Integralabf(x)dx\int_{a}^{b} f(x) \, dx Integral
Powab{a}^{b} Power
Sqrtz\sqrt{z} Principal square root
OpenInterval(a,b)\left(a, b\right) Open interval
Infinity\infty Positive infinity
Source code for this entry:
    Formula(Equal(EllipticPi(n, m), Integral(Div(1, Mul(Mul(Sub(1, Mul(n, Pow(x, 2))), Sqrt(Sub(1, Pow(x, 2)))), Sqrt(Sub(1, Mul(m, Pow(x, 2)))))), For(x, 0, 1)))),
    Variables(n, m),
    Assumptions(And(Element(n, OpenInterval(Neg(Infinity), 1)), Element(m, OpenInterval(Neg(Infinity), 1)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC