Assumptions:
TeX:
\Pi\!\left(n, m\right) = \int_{0}^{1} \frac{1}{\left(1 - n {x}^{2}\right) \sqrt{1 - {x}^{2}} \sqrt{1 - m {x}^{2}}} \, dx n \in \left(-\infty, 1\right) \;\mathbin{\operatorname{and}}\; m \in \left(-\infty, 1\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
EllipticPi | Legendre complete elliptic integral of the third kind | |
Integral | Integral | |
Pow | Power | |
Sqrt | Principal square root | |
OpenInterval | Open interval | |
Infinity | Positive infinity |
Source code for this entry:
Entry(ID("c10014"), Formula(Equal(EllipticPi(n, m), Integral(Div(1, Mul(Mul(Sub(1, Mul(n, Pow(x, 2))), Sqrt(Sub(1, Pow(x, 2)))), Sqrt(Sub(1, Mul(m, Pow(x, 2)))))), For(x, 0, 1)))), Variables(n, m), Assumptions(And(Element(n, OpenInterval(Neg(Infinity), 1)), Element(m, OpenInterval(Neg(Infinity), 1)))))