Fungrim home page

Fungrim entry: c03f78

RF ⁣(x,y,z)1(xyz)1/6R_F\!\left(x, y, z\right) \le \frac{1}{{\left(x y z\right)}^{1 / 6}}
Assumptions:x(0,)  and  y(0,)  and  z(0,)x \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; z \in \left(0, \infty\right)
References:
  • https://dlmf.nist.gov/19.24
TeX:
R_F\!\left(x, y, z\right) \le \frac{1}{{\left(x y z\right)}^{1 / 6}}

x \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; z \in \left(0, \infty\right)
Definitions:
Fungrim symbol Notation Short description
CarlsonRFRF ⁣(x,y,z)R_F\!\left(x, y, z\right) Carlson symmetric elliptic integral of the first kind
Powab{a}^{b} Power
OpenInterval(a,b)\left(a, b\right) Open interval
Infinity\infty Positive infinity
Source code for this entry:
Entry(ID("c03f78"),
    Formula(LessEqual(CarlsonRF(x, y, z), Div(1, Pow(Mul(Mul(x, y), z), Div(1, 6))))),
    Variables(x, y, z),
    Assumptions(And(Element(x, OpenInterval(0, Infinity)), Element(y, OpenInterval(0, Infinity)), Element(z, OpenInterval(0, Infinity)))),
    References("https://dlmf.nist.gov/19.24"))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC