Fungrim home page

Fungrim entry: c03ed9

Symbol: LCM lcm ⁣(a,b)\operatorname{lcm}\!\left(a, b\right) Least common multiple
The least common multiple function can be called either with with an arbitrary number of integer arguments or with a single finite set of integers as the argument. The current entries only deal with the case of two arguments.
Domain Codomain
aZandbZa \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, b \in \mathbb{Z} lcm ⁣(a,b)Z0\operatorname{lcm}\!\left(a, b\right) \in \mathbb{Z}_{\ge 0}
SP ⁣(Z)andS<ZS \in \mathscr{P}\!\left(\mathbb{Z}\right) \,\mathbin{\operatorname{and}}\, \left|S\right| \lt \left|\mathbb{Z}\right| lcm ⁣(S)Z0\operatorname{lcm}\!\left(S\right) \in \mathbb{Z}_{\ge 0}
Table data: (P,Q)\left(P, Q\right) such that (P)    (Q)\left(P\right) \implies \left(Q\right)
Definitions:
Fungrim symbol Notation Short description
LCMlcm ⁣(a,b)\operatorname{lcm}\!\left(a, b\right) Least common multiple
ZZZ\mathbb{Z} Integers
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
PowerSetP ⁣(S)\mathscr{P}\!\left(S\right) Power set
CardinalityS\left|S\right| Set cardinality
Source code for this entry:
Entry(ID("c03ed9"),
    SymbolDefinition(LCM, LCM(a, b), "Least common multiple"),
    Description("The least common multiple function can be called either with with an arbitrary number of integer arguments or with a single finite set of integers as the argument. The current entries only deal with the case of two arguments."),
    Table(TableRelation(Tuple(P, Q), Implies(P, Q)), TableHeadings(Description("Domain"), Description("Codomain")), List(Tuple(And(Element(a, ZZ), Element(b, ZZ)), Element(LCM(a, b), ZZGreaterEqual(0))), Tuple(And(Element(S, PowerSet(ZZ)), Less(Cardinality(S), Cardinality(ZZ))), Element(LCM(S), ZZGreaterEqual(0))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC