Assumptions:
TeX:
\operatorname{atan}\!\left(\frac{1}{z}\right) = \frac{\pi}{2} \operatorname{csgn}\!\left(\frac{1}{z}\right) - \operatorname{atan}(z) z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; i z \notin \left\{0\right\} \cup \left(-\infty, -1\right] \cup \left[1, \infty\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Atan | Inverse tangent | |
Pi | The constant pi (3.14...) | |
Csgn | Real-valued sign function for complex numbers | |
CC | Complex numbers | |
ConstI | Imaginary unit | |
OpenClosedInterval | Open-closed interval | |
Infinity | Positive infinity | |
ClosedOpenInterval | Closed-open interval |
Source code for this entry:
Entry(ID("bfc13f"), Formula(Equal(Atan(Div(1, z)), Sub(Mul(Div(Pi, 2), Csgn(Div(1, z))), Atan(z)))), Variables(z), Assumptions(And(Element(z, CC), NotElement(Mul(ConstI, z), Union(Set(0), OpenClosedInterval(Neg(Infinity), -1), ClosedOpenInterval(1, Infinity))))))