Assumptions:
References:
- https://doi.org/10.1080%2F10652469.2017.1376193
TeX:
\frac{\psi\!\left(z\right)}{\Gamma(z)} = -{e}^{2 \gamma z} \prod_{n=0}^{\infty} \left(1 - \frac{z}{x_{n}}\right) \exp\!\left(\frac{z}{x_{n}}\right) z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \{0, -1, \ldots\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
DigammaFunction | Digamma function | |
Gamma | Gamma function | |
Exp | Exponential function | |
ConstGamma | The constant gamma (0.577...) | |
Product | Product | |
DigammaFunctionZero | Zero of the digamma function | |
Infinity | Positive infinity | |
CC | Complex numbers | |
ZZLessEqual | Integers less than or equal to n |
Source code for this entry:
Entry(ID("bf533f"), Formula(Equal(Div(DigammaFunction(z), Gamma(z)), Neg(Mul(Exp(Mul(Mul(2, ConstGamma), z)), Product(Mul(Sub(1, Div(z, DigammaFunctionZero(n))), Exp(Div(z, DigammaFunctionZero(n)))), For(n, 0, Infinity)))))), Variables(z), Assumptions(And(Element(z, CC), NotElement(z, ZZLessEqual(0)))), References("https://doi.org/10.1080%2F10652469.2017.1376193"))