Assumptions:
TeX:
\zeta\!\left(s, a + N\right) = \zeta\!\left(s, a\right) - \sum_{n=0}^{N - 1} \frac{1}{{\left(n + a\right)}^{s}} s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; s \ne 1 \;\mathbin{\operatorname{and}}\; \left(a \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{or}}\; \operatorname{Re}(s) < 0 \;\mathbin{\operatorname{or}}\; s = 0\right) \;\mathbin{\operatorname{and}}\; N \in \mathbb{Z}_{\ge 1}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
HurwitzZeta | Hurwitz zeta function | |
Sum | Sum | |
Pow | Power | |
CC | Complex numbers | |
ZZLessEqual | Integers less than or equal to n | |
Re | Real part | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("bed7ee"), Formula(Equal(HurwitzZeta(s, Add(a, N)), Sub(HurwitzZeta(s, a), Sum(Div(1, Pow(Add(n, a), s)), For(n, 0, Sub(N, 1)))))), Variables(s, a, N), Assumptions(And(Element(s, CC), Element(a, CC), NotEqual(s, 1), Or(NotElement(a, ZZLessEqual(0)), Less(Re(s), 0), Equal(s, 0)), Element(N, ZZGreaterEqual(1)))))