Assumptions:
TeX:
E_{4}^{3}\!\left(\tau\right) - E_{6}^{2}\!\left(\tau\right) = \frac{27}{4} {\left(\theta_{2}\!\left(0 , \tau\right) \theta_{3}\!\left(0 , \tau\right) \theta_{4}\!\left(0 , \tau\right)\right)}^{8}
\tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Pow | Power | |
| EisensteinE | Normalized Eisenstein series | |
| JacobiTheta | Jacobi theta function | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("bd7d8e"),
Formula(Equal(Sub(Pow(EisensteinE(4, tau), 3), Pow(EisensteinE(6, tau), 2)), Mul(Div(27, 4), Pow(Mul(Mul(JacobiTheta(2, 0, tau), JacobiTheta(3, 0, tau)), JacobiTheta(4, 0, tau)), 8)))),
Variables(tau),
Assumptions(Element(tau, HH)))