Assumptions:
TeX:
R_C\!\left(-x, y\right) = \frac{1}{\sqrt{x + y}} \left(\frac{\pi}{2} - \operatorname{atanh}\!\left(\sqrt{\frac{x}{x + y}}\right) i\right)
x \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \left(0, \infty\right)Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRC | Degenerate Carlson symmetric elliptic integral of the first kind | |
| Sqrt | Principal square root | |
| Pi | The constant pi (3.14...) | |
| ConstI | Imaginary unit | |
| OpenInterval | Open interval | |
| Infinity | Positive infinity |
Source code for this entry:
Entry(ID("bc2f88"),
Formula(Equal(CarlsonRC(Neg(x), y), Mul(Div(1, Sqrt(Add(x, y))), Sub(Div(Pi, 2), Mul(Atanh(Sqrt(Div(x, Add(x, y)))), ConstI))))),
Variables(x, y),
Assumptions(And(Element(x, OpenInterval(0, Infinity)), Element(y, OpenInterval(0, Infinity)))))