Fungrim home page

Fungrim entry: bba4ec

ψ(m) ⁣(z)=(1)m+1m!ζ ⁣(m+1,z)\psi^{(m)}\!\left(z\right) = {\left(-1\right)}^{m + 1} m ! \zeta\!\left(m + 1, z\right)
Assumptions:mZ1  and  zC  and  z{0,1,}m \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \{0, -1, \ldots\}
TeX:
\psi^{(m)}\!\left(z\right) = {\left(-1\right)}^{m + 1} m ! \zeta\!\left(m + 1, z\right)

m \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \{0, -1, \ldots\}
Definitions:
Fungrim symbol Notation Short description
DigammaFunctionψ ⁣(z)\psi\!\left(z\right) Digamma function
Powab{a}^{b} Power
Factorialn!n ! Factorial
HurwitzZetaζ ⁣(s,a)\zeta\!\left(s, a\right) Hurwitz zeta function
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
CCC\mathbb{C} Complex numbers
ZZLessEqualZn\mathbb{Z}_{\le n} Integers less than or equal to n
Source code for this entry:
Entry(ID("bba4ec"),
    Formula(Equal(DigammaFunction(z, m), Mul(Mul(Pow(-1, Add(m, 1)), Factorial(m)), HurwitzZeta(Add(m, 1), z)))),
    Variables(m, z),
    Assumptions(And(Element(m, ZZGreaterEqual(1)), Element(z, CC), NotElement(z, ZZLessEqual(0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC