Fungrim home page

Fungrim entry: bb5d67

zy(z)+ay(z)y(z)=0   where y(z)=C0F1 ⁣(a,z)+Dz1a0F1 ⁣(2a,z)z y''(z) + a y'(z) - y(z) = 0\; \text{ where } y(z) = C \,{}_0{\textbf F}_1\!\left(a, z\right) + D {z}^{1 - a} \,{}_0{\textbf F}_1\!\left(2 - a, z\right)
Assumptions:aC  and  zC  and  CC  and  DC  and  (z0  or  1aZ0)a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; C \in \mathbb{C} \;\mathbin{\operatorname{and}}\; D \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(z \ne 0 \;\mathbin{\operatorname{or}}\; 1 - a \in \mathbb{Z}_{\ge 0}\right)
TeX:
z y''(z) + a y'(z) - y(z) = 0\; \text{ where } y(z) = C \,{}_0{\textbf F}_1\!\left(a, z\right) + D {z}^{1 - a} \,{}_0{\textbf F}_1\!\left(2 - a, z\right)

a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; C \in \mathbb{C} \;\mathbin{\operatorname{and}}\; D \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(z \ne 0 \;\mathbin{\operatorname{or}}\; 1 - a \in \mathbb{Z}_{\ge 0}\right)
Definitions:
Fungrim symbol Notation Short description
ComplexDerivativeddzf ⁣(z)\frac{d}{d z}\, f\!\left(z\right) Complex derivative
Hypergeometric0F1Regularized0F1 ⁣(a,z)\,{}_0{\textbf F}_1\!\left(a, z\right) Regularized confluent hypergeometric limit function
Powab{a}^{b} Power
CCC\mathbb{C} Complex numbers
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
Entry(ID("bb5d67"),
    Formula(Where(Equal(Sub(Add(Mul(z, ComplexDerivative(y(z), For(z, z, 2))), Mul(a, ComplexDerivative(y(z), For(z, z, 1)))), y(z)), 0), Equal(y(z), Add(Mul(C, Hypergeometric0F1Regularized(a, z)), Mul(Mul(D, Pow(z, Sub(1, a))), Hypergeometric0F1Regularized(Sub(2, a), z)))))),
    Variables(z, a, C, D),
    Assumptions(And(Element(a, CC), Element(z, CC), Element(C, CC), Element(D, CC), Or(NotEqual(z, 0), Element(Sub(1, a), ZZGreaterEqual(0))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC