Assumptions:
TeX:
{e}^{c + z} = {e}^{c} \sum_{k=0}^{\infty} \frac{{z}^{k}}{k !} c \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Exp | Exponential function | |
Sum | Sum | |
Pow | Power | |
Factorial | Factorial | |
Infinity | Positive infinity | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("bad502"), Formula(Equal(Exp(Add(c, z)), Mul(Exp(c), Sum(Div(Pow(z, k), Factorial(k)), For(k, 0, Infinity))))), Variables(c, z), Assumptions(And(Element(c, CC), Element(z, CC))))