Assumptions:
TeX:
\varphi\!\left(\prod_{k=1}^{m} p_{k}^{{e}_{k}}\right) = \prod_{k=1}^{m} \varphi\!\left(p_{k}^{{e}_{k}}\right)
{e}_{k} \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; m \in \mathbb{Z}_{\ge 0}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Totient | Euler totient function | |
| Product | Product | |
| Pow | Power | |
| PrimeNumber | nth prime number | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("b9c36d"),
Formula(Equal(Totient(Product(Pow(PrimeNumber(k), Subscript(e, k)), For(k, 1, m))), Product(Totient(Pow(PrimeNumber(k), Subscript(e, k))), For(k, 1, m)))),
Variables(e, m),
Assumptions(And(Element(Subscript(e, k), ZZGreaterEqual(0)), Element(m, ZZGreaterEqual(0)))))