# Fungrim entry: b96c9d

$\sigma\!\left(z, \tau\right) = \exp\!\left(-\frac{{z}^{2}}{6} \frac{\theta'''_{1}\!\left(0 , \tau\right)}{\theta'_{1}\!\left(0 , \tau\right)}\right) \frac{\theta_{1}\!\left(z , \tau\right)}{\theta'_{1}\!\left(0 , \tau\right)}$
Assumptions:$z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}$
TeX:
\sigma\!\left(z, \tau\right) = \exp\!\left(-\frac{{z}^{2}}{6} \frac{\theta'''_{1}\!\left(0 , \tau\right)}{\theta'_{1}\!\left(0 , \tau\right)}\right) \frac{\theta_{1}\!\left(z , \tau\right)}{\theta'_{1}\!\left(0 , \tau\right)}

z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Definitions:
Fungrim symbol Notation Short description
WeierstrassSigma$\sigma\!\left(z, \tau\right)$ Weierstrass sigma function
Exp${e}^{z}$ Exponential function
Pow${a}^{b}$ Power
JacobiTheta$\theta_{j}\!\left(z , \tau\right)$ Jacobi theta function
CC$\mathbb{C}$ Complex numbers
HH$\mathbb{H}$ Upper complex half-plane
Source code for this entry:
Entry(ID("b96c9d"),
Formula(Equal(WeierstrassSigma(z, tau), Mul(Exp(Mul(Neg(Div(Pow(z, 2), 6)), Div(JacobiTheta(1, 0, tau, 3), JacobiTheta(1, 0, tau, 1)))), Div(JacobiTheta(1, z, tau), JacobiTheta(1, 0, tau, 1))))),
Variables(z, tau),
Assumptions(And(Element(z, CC), Element(tau, HH))))

## Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC