Assumptions:
TeX:
\sigma\!\left(z, \tau\right) = \exp\!\left(-\frac{{z}^{2}}{6} \frac{\left[ \frac{d^{3}}{{d z}^{3}} \theta_1\!\left(z, \tau\right) \right]_{z = 0}}{\left[ \frac{d}{d z}\, \theta_1\!\left(z, \tau\right) \right]_{z = 0}}\right) \frac{\theta_1\!\left(z, \tau\right)}{\left[ \frac{d}{d z}\, \theta_1\!\left(z, \tau\right) \right]_{z = 0}} z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H} \,\mathbin{\operatorname{and}}\, z \notin \Lambda_{(1, \tau)}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
WeierstrassSigma | Weierstrass sigma function | |
Exp | Exponential function | |
Pow | Power | |
Derivative | Derivative | |
JacobiTheta1 | Jacobi theta function | |
CC | Complex numbers | |
HH | Upper complex half-plane | |
Lattice | Complex lattice with periods a, b |
Source code for this entry:
Entry(ID("b96c9d"), Formula(Equal(WeierstrassSigma(z, tau), Mul(Exp(Mul(Neg(Div(Pow(z, 2), 6)), Div(Derivative(JacobiTheta1(z, tau), Tuple(z, 0, 3)), Derivative(JacobiTheta1(z, tau), Tuple(z, 0, 1))))), Div(JacobiTheta1(z, tau), Derivative(JacobiTheta1(z, tau), Tuple(z, 0, 1)))))), Variables(z, tau), Assumptions(And(Element(z, CC), Element(tau, HH), NotElement(z, Lattice(1, tau)))))