Assumptions:
TeX:
\sigma\!\left(z, \tau\right) = \exp\!\left(-\frac{{z}^{2}}{6} \frac{\theta'''_{1}\!\left(0 , \tau\right)}{\theta'_{1}\!\left(0 , \tau\right)}\right) \frac{\theta_{1}\!\left(z , \tau\right)}{\theta'_{1}\!\left(0 , \tau\right)}
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| WeierstrassSigma | Weierstrass sigma function | |
| Exp | Exponential function | |
| Pow | Power | |
| JacobiTheta | Jacobi theta function | |
| CC | Complex numbers | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("b96c9d"),
Formula(Equal(WeierstrassSigma(z, tau), Mul(Exp(Mul(Neg(Div(Pow(z, 2), 6)), Div(JacobiTheta(1, 0, tau, 3), JacobiTheta(1, 0, tau, 1)))), Div(JacobiTheta(1, z, tau), JacobiTheta(1, 0, tau, 1))))),
Variables(z, tau),
Assumptions(And(Element(z, CC), Element(tau, HH))))