Assumptions:
TeX:
U_{n - 1}\!\left(x\right) \sqrt{1 - {x}^{2}} = \sin\!\left(n \operatorname{acos}\!\left(x\right)\right) n \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, x \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevU | Chebyshev polynomial of the second kind | |
Sqrt | Principal square root | |
Pow | Power | |
Sin | Sine | |
ZZ | Integers | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("b8fdcd"), Formula(Equal(Mul(ChebyshevU(Sub(n, 1), x), Sqrt(Sub(1, Pow(x, 2)))), Sin(Mul(n, Acos(x))))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, CC))))