Assumptions:
TeX:
U_{n - 1}\!\left(x\right) \sqrt{1 - {x}^{2}} = \sin\!\left(n \operatorname{acos}\!\left(x\right)\right)
n \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, x \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ChebyshevU | Chebyshev polynomial of the second kind | |
| Sqrt | Principal square root | |
| Pow | Power | |
| Sin | Sine | |
| ZZ | Integers | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("b8fdcd"),
Formula(Equal(Mul(ChebyshevU(Sub(n, 1), x), Sqrt(Sub(1, Pow(x, 2)))), Sin(Mul(n, Acos(x))))),
Variables(n, x),
Assumptions(And(Element(n, ZZ), Element(x, CC))))