Assumptions:
TeX:
R_J\!\left(x, y, z, w\right) = \lim_{\varepsilon \to {0}^{+}} R_J\!\left(x + \varepsilon i, y + \varepsilon i, z + \varepsilon i, w + \varepsilon i\right) x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; w \in \mathbb{C} \setminus \left\{0\right\} \;\mathbin{\operatorname{and}}\; \left(\left(x \ne 0 \;\mathbin{\operatorname{and}}\; y \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(x \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(y \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right)\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
CarlsonRJ | Carlson symmetric elliptic integral of the third kind | |
RightLimit | Limiting value, from the right | |
ConstI | Imaginary unit | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("b8ca70"), Formula(Equal(CarlsonRJ(x, y, z, w), RightLimit(CarlsonRJ(Add(x, Mul(epsilon, ConstI)), Add(y, Mul(epsilon, ConstI)), Add(z, Mul(epsilon, ConstI)), Add(w, Mul(epsilon, ConstI))), For(epsilon, 0)))), Variables(x, y, z, w), Assumptions(And(Element(x, CC), Element(y, CC), Element(z, CC), Element(w, SetMinus(CC, Set(0))), Or(And(NotEqual(x, 0), NotEqual(y, 0)), And(NotEqual(x, 0), NotEqual(z, 0)), And(NotEqual(y, 0), NotEqual(z, 0))))))