Assumptions:
TeX:
{x}^{n} = \sum_{k=0}^{n} \left\{{n \atop k}\right\} \left(x - n + 1\right)_{n} n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | Power | |
Sum | Sum | |
StirlingS2 | Stirling number of the second kind | |
RisingFactorial | Rising factorial | |
ZZGreaterEqual | Integers greater than or equal to n | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("b823b0"), Formula(Equal(Pow(x, n), Sum(Mul(StirlingS2(n, k), RisingFactorial(Add(Sub(x, n), 1), n)), For(k, 0, n)))), Variables(x, n), Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(x, CC))))