Assumptions:
TeX:
R_{-a}\!\left(\left[b_{1}, b_{2}, \ldots, b_{n}\right], \left[\underbrace{z, \ldots, z}_{n \text{ times}}\right]\right) = {z}^{-a}
a \in \mathbb{R} \;\mathbin{\operatorname{and}}\; \left(b_{k} \in \mathbb{R} \;\text{ for all } k \in \{1, 2, \ldots, n\}\right) \;\mathbin{\operatorname{and}}\; \sum_{k=1}^{n} b_{k} > a > 0 \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left(-\infty, 0\right]Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonHypergeometricR | Carlson multivariate hypergeometric function | |
| Pow | Power | |
| RR | Real numbers | |
| Range | Integers between given endpoints | |
| Sum | Sum | |
| CC | Complex numbers | |
| OpenClosedInterval | Open-closed interval | |
| Infinity | Positive infinity |
Source code for this entry:
Entry(ID("b81ca0"),
Formula(Equal(CarlsonHypergeometricR(Neg(a), List(b_(k), For(k, 1, n)), List(Repeat(z, n))), Pow(z, Neg(a)))),
Variables(a, b_, n, z),
Assumptions(And(Element(a, RR), All(Element(b_(k), RR), ForElement(k, Range(1, n))), Greater(Sum(b_(k), For(k, 1, n)), a, 0), Element(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))))))