Assumptions:
References:
- R. B. Paris and D. Kaminski (2001), Asymptotics of Mellin-Barnes integrals, Cambridge University Press. (2.1.19), p. 34.
TeX:
\left|\Gamma(z)\right| \le {\left(2 \pi\right)}^{1 / 2} {\left|z\right|}^{x - 1 / 2} {e}^{-\pi \left|y\right| / 2} \exp\!\left(\frac{1}{6 \left|z\right|}\right)\; \text{ where } z = x + y i x \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \mathbb{R} \;\mathbin{\operatorname{and}}\; x + y i \ne 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | Absolute value | |
Gamma | Gamma function | |
Pow | Power | |
Pi | The constant pi (3.14...) | |
Exp | Exponential function | |
ConstI | Imaginary unit | |
ClosedOpenInterval | Closed-open interval | |
Infinity | Positive infinity | |
RR | Real numbers |
Source code for this entry:
Entry(ID("b7fec0"), Formula(Where(LessEqual(Abs(Gamma(z)), Mul(Mul(Mul(Pow(Mul(2, Pi), Div(1, 2)), Pow(Abs(z), Sub(x, Div(1, 2)))), Exp(Neg(Div(Mul(Pi, Abs(y)), 2)))), Exp(Div(1, Mul(6, Abs(z)))))), Equal(z, Add(x, Mul(y, ConstI))))), Variables(x, y), Assumptions(And(Element(x, ClosedOpenInterval(0, Infinity)), Element(y, RR), NotEqual(Add(x, Mul(y, ConstI)), 0))), References("R. B. Paris and D. Kaminski (2001), Asymptotics of Mellin-Barnes integrals, Cambridge University Press. (2.1.19), p. 34."))