Fungrim home page

Fungrim entry: b7fec0

Γ(z)(2π)1/2zx1/2eπy/2exp ⁣(16z)   where z=x+yi\left|\Gamma(z)\right| \le {\left(2 \pi\right)}^{1 / 2} {\left|z\right|}^{x - 1 / 2} {e}^{-\pi \left|y\right| / 2} \exp\!\left(\frac{1}{6 \left|z\right|}\right)\; \text{ where } z = x + y i
Assumptions:x[0,)  and  yR  and  x+yi0x \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \mathbb{R} \;\mathbin{\operatorname{and}}\; x + y i \ne 0
References:
  • R. B. Paris and D. Kaminski (2001), Asymptotics of Mellin-Barnes integrals, Cambridge University Press. (2.1.19), p. 34.
TeX:
\left|\Gamma(z)\right| \le {\left(2 \pi\right)}^{1 / 2} {\left|z\right|}^{x - 1 / 2} {e}^{-\pi \left|y\right| / 2} \exp\!\left(\frac{1}{6 \left|z\right|}\right)\; \text{ where } z = x + y i

x \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \mathbb{R} \;\mathbin{\operatorname{and}}\; x + y i \ne 0
Definitions:
Fungrim symbol Notation Short description
Absz\left|z\right| Absolute value
GammaΓ(z)\Gamma(z) Gamma function
Powab{a}^{b} Power
Piπ\pi The constant pi (3.14...)
Expez{e}^{z} Exponential function
ConstIii Imaginary unit
ClosedOpenInterval[a,b)\left[a, b\right) Closed-open interval
Infinity\infty Positive infinity
RRR\mathbb{R} Real numbers
Source code for this entry:
Entry(ID("b7fec0"),
    Formula(Where(LessEqual(Abs(Gamma(z)), Mul(Mul(Mul(Pow(Mul(2, Pi), Div(1, 2)), Pow(Abs(z), Sub(x, Div(1, 2)))), Exp(Neg(Div(Mul(Pi, Abs(y)), 2)))), Exp(Div(1, Mul(6, Abs(z)))))), Equal(z, Add(x, Mul(y, ConstI))))),
    Variables(x, y),
    Assumptions(And(Element(x, ClosedOpenInterval(0, Infinity)), Element(y, RR), NotEqual(Add(x, Mul(y, ConstI)), 0))),
    References("R. B. Paris and D. Kaminski (2001), Asymptotics of Mellin-Barnes integrals, Cambridge University Press. (2.1.19), p. 34."))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC