Fungrim home page

Fungrim entry: b7d740

Symbol: Arg arg(z)\arg(z) Complex argument
Domain Codomain
zRz \in \mathbb{R} arg(z){0,π}\arg(z) \in \left\{0, \pi\right\}
zCz \in \mathbb{C} arg(z)(π,π]\arg(z) \in \left(-\pi, \pi\right]
z{}z \in \left\{\infty\right\} arg(z){0}\arg(z) \in \left\{0\right\}
z{}z \in \left\{-\infty\right\} arg(z){π}\arg(z) \in \left\{\pi\right\}
Table data: (P,Q)\left(P, Q\right) such that (P)        (Q)\left(P\right) \;\implies\; \left(Q\right)
Definitions:
Fungrim symbol Notation Short description
Argarg(z)\arg(z) Complex argument
RRR\mathbb{R} Real numbers
Piπ\pi The constant pi (3.14...)
CCC\mathbb{C} Complex numbers
OpenClosedInterval(a,b]\left(a, b\right] Open-closed interval
Infinity\infty Positive infinity
Source code for this entry:
Entry(ID("b7d740"),
    SymbolDefinition(Arg, Arg(z), "Complex argument"),
    Table(TableRelation(Tuple(P, Q), Implies(P, Q)), TableHeadings(Description("Domain"), Description("Codomain")), List(Tuple(Element(z, RR), Element(Arg(z), Set(0, Pi))), Tuple(Element(z, CC), Element(Arg(z), OpenClosedInterval(Neg(Pi), Pi))), Tuple(Element(z, Set(Infinity)), Element(Arg(z), Set(0))), Tuple(Element(z, Set(Neg(Infinity))), Element(Arg(z), Set(Pi))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC