Fungrim home page

Fungrim entry: b7cfb3

F ⁣(ϕ,1)={log ⁣(1+sin(ϕ)cos(ϕ)),π2Re(ϕ)π2  and  ϕ{π2,π2}sgn(ϕ),ϕ{π2,π2}~,otherwiseF\!\left(\phi, 1\right) = \begin{cases} \log\!\left(\frac{1 + \sin(\phi)}{\cos(\phi)}\right), & \frac{-\pi}{2} \le \operatorname{Re}(\phi) \le \frac{\pi}{2} \;\mathbin{\operatorname{and}}\; \phi \notin \left\{\frac{-\pi}{2}, \frac{\pi}{2}\right\}\\\operatorname{sgn}(\phi) \infty, & \phi \in \left\{\frac{-\pi}{2}, \frac{\pi}{2}\right\}\\{\tilde \infty}, & \text{otherwise}\\ \end{cases}
Assumptions:ϕC\phi \in \mathbb{C}
TeX:
F\!\left(\phi, 1\right) = \begin{cases} \log\!\left(\frac{1 + \sin(\phi)}{\cos(\phi)}\right), & \frac{-\pi}{2} \le \operatorname{Re}(\phi) \le \frac{\pi}{2} \;\mathbin{\operatorname{and}}\; \phi \notin \left\{\frac{-\pi}{2}, \frac{\pi}{2}\right\}\\\operatorname{sgn}(\phi) \infty, & \phi \in \left\{\frac{-\pi}{2}, \frac{\pi}{2}\right\}\\{\tilde \infty}, & \text{otherwise}\\ \end{cases}

\phi \in \mathbb{C}
Definitions:
Fungrim symbol Notation Short description
IncompleteEllipticFF ⁣(ϕ,m)F\!\left(\phi, m\right) Legendre incomplete elliptic integral of the first kind
Loglog(z)\log(z) Natural logarithm
Sinsin(z)\sin(z) Sine
Coscos(z)\cos(z) Cosine
Piπ\pi The constant pi (3.14...)
ReRe(z)\operatorname{Re}(z) Real part
Signsgn(z)\operatorname{sgn}(z) Sign function
Infinity\infty Positive infinity
UnsignedInfinity~{\tilde \infty} Unsigned infinity
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("b7cfb3"),
    Formula(Equal(IncompleteEllipticF(phi, 1), Cases(Tuple(Log(Div(Add(1, Sin(phi)), Cos(phi))), And(LessEqual(Div(Neg(Pi), 2), Re(phi), Div(Pi, 2)), NotElement(phi, Set(Div(Neg(Pi), 2), Div(Pi, 2))))), Tuple(Mul(Sign(phi), Infinity), Element(phi, Set(Div(Neg(Pi), 2), Div(Pi, 2)))), Tuple(UnsignedInfinity, Otherwise)))),
    Variables(phi),
    Assumptions(Element(phi, CC)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC