Assumptions:
TeX:
F\!\left(\phi, 1\right) = \begin{cases} \log\!\left(\frac{1 + \sin(\phi)}{\cos(\phi)}\right), & \frac{-\pi}{2} \le \operatorname{Re}(\phi) \le \frac{\pi}{2} \;\mathbin{\operatorname{and}}\; \phi \notin \left\{\frac{-\pi}{2}, \frac{\pi}{2}\right\}\\\operatorname{sgn}(\phi) \infty, & \phi \in \left\{\frac{-\pi}{2}, \frac{\pi}{2}\right\}\\{\tilde \infty}, & \text{otherwise}\\ \end{cases} \phi \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
IncompleteEllipticF | Legendre incomplete elliptic integral of the first kind | |
Log | Natural logarithm | |
Sin | Sine | |
Cos | Cosine | |
Pi | The constant pi (3.14...) | |
Re | Real part | |
Sign | Sign function | |
Infinity | Positive infinity | |
UnsignedInfinity | Unsigned infinity | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("b7cfb3"), Formula(Equal(IncompleteEllipticF(phi, 1), Cases(Tuple(Log(Div(Add(1, Sin(phi)), Cos(phi))), And(LessEqual(Div(Neg(Pi), 2), Re(phi), Div(Pi, 2)), NotElement(phi, Set(Div(Neg(Pi), 2), Div(Pi, 2))))), Tuple(Mul(Sign(phi), Infinity), Element(phi, Set(Div(Neg(Pi), 2), Div(Pi, 2)))), Tuple(UnsignedInfinity, Otherwise)))), Variables(phi), Assumptions(Element(phi, CC)))