Assumptions:
TeX:
\tau = i \frac{K\!\left(1 - \lambda(\tau)\right)}{K\!\left(\lambda(\tau)\right)} \tau \in \operatorname{Interior}(\mathcal{F}_{\lambda}) \cup \left\{ \tau : \tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(\tau) = 1 \right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ConstI | Imaginary unit | |
EllipticK | Legendre complete elliptic integral of the first kind | |
ModularLambda | Modular lambda function | |
ModularLambdaFundamentalDomain | Fundamental domain of the modular lambda function | |
HH | Upper complex half-plane | |
Re | Real part |
Source code for this entry:
Entry(ID("b7174d"), Formula(Equal(tau, Mul(ConstI, Div(EllipticK(Sub(1, ModularLambda(tau))), EllipticK(ModularLambda(tau)))))), Variables(tau), Assumptions(Element(tau, Union(Interior(ModularLambdaFundamentalDomain), Set(tau, For(tau), And(Element(tau, HH), Equal(Re(tau), 1)))))))