Assumptions:
TeX:
{U}^{(r)}_{n}(1) = \frac{\left(n + 1\right)_{r + 1} \left(n - r + 1\right)_{r}}{\left(2 r + 1\right)!!}
n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; r \in \mathbb{Z}_{\ge 0}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ComplexDerivative | Complex derivative | |
| ChebyshevU | Chebyshev polynomial of the second kind | |
| RisingFactorial | Rising factorial | |
| ZZ | Integers | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("b6b014"),
Formula(Equal(ComplexDerivative(ChebyshevU(n, x), For(x, 1, r)), Div(Mul(RisingFactorial(Add(n, 1), Add(r, 1)), RisingFactorial(Add(Sub(n, r), 1), r)), DoubleFactorial(Add(Mul(2, r), 1))))),
Variables(n, r),
Assumptions(And(Element(n, ZZ), Element(r, ZZGreaterEqual(0)))))