Assumptions:
TeX:
\left|\frac{{f}^{(k)}(z)}{k !}\right| \le \frac{C}{{R}^{k}}\; \text{ where } C = \mathop{\operatorname{sup}}\limits_{t \in \mathbb{C},\,\left|t - z\right| = R} \left|f\!\left(t\right)\right| z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, k \in \mathbb{Z}_{\ge 0} \,\mathbin{\operatorname{and}}\, R \in \mathbb{R} \,\mathbin{\operatorname{and}}\, R \gt 0 \,\mathbin{\operatorname{and}}\, \operatorname{ClosedDisk}\!\left(z, R\right) \subset \operatorname{HolomorphicDomain}\!\left(f\!\left(z\right), z, \mathbb{C}\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | Absolute value | |
Derivative | Derivative | |
Factorial | Factorial | |
Pow | Power | |
Supremum | Supremum of a set or function | |
CC | Complex numbers | |
ZZGreaterEqual | Integers greater than or equal to n | |
RR | Real numbers |
Source code for this entry:
Entry(ID("b6582a"), Formula(Where(LessEqual(Abs(Div(Derivative(f(z), Tuple(z, z, k)), Factorial(k))), Div(C, Pow(R, k))), Equal(C, Supremum(Abs(f(t)), t, And(Element(t, CC), Equal(Abs(Sub(t, z)), R)))))), Variables(f, z, k, R), Assumptions(And(Element(z, CC), Element(k, ZZGreaterEqual(0)), Element(R, RR), Greater(R, 0), Subset(ClosedDisk(z, R), HolomorphicDomain(f(z), z, CC)))))