Assumptions:
TeX:
\left|\frac{{f}^{(k)}(z)}{k !}\right| \le \frac{C}{{R}^{k}}\; \text{ where } C = \mathop{\operatorname{sup}}\limits_{t \in \mathbb{C},\,\left|t - z\right| = R} \left|f(t)\right| z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; k \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; R \in \mathbb{R} \;\mathbin{\operatorname{and}}\; R > 0 \;\mathbin{\operatorname{and}}\; f(t) \text{ is holomorphic on } t \in \operatorname{ClosedDisk}\!\left(z, R\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | Absolute value | |
ComplexDerivative | Complex derivative | |
Factorial | Factorial | |
Pow | Power | |
Supremum | Supremum of a set or function | |
CC | Complex numbers | |
ZZGreaterEqual | Integers greater than or equal to n | |
RR | Real numbers | |
IsHolomorphic | Holomorphic predicate |
Source code for this entry:
Entry(ID("b6582a"), Formula(Where(LessEqual(Abs(Div(ComplexDerivative(f(z), For(z, z, k)), Factorial(k))), Div(C, Pow(R, k))), Equal(C, Supremum(Abs(f(t)), ForElement(t, CC), Equal(Abs(Sub(t, z)), R))))), Variables(f, z, k, R), Assumptions(And(Element(z, CC), Element(k, ZZGreaterEqual(0)), Element(R, RR), Greater(R, 0), IsHolomorphic(f(t), ForElement(t, Subset(ClosedDisk(z, R)))))))