Assumptions:
TeX:
\left|\frac{{f}^{(k)}(z)}{k !}\right| \le \frac{C}{{R}^{k}}\; \text{ where } C = \mathop{\operatorname{sup}}\limits_{t \in \mathbb{C},\,\left|t - z\right| = R} \left|f(t)\right|
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; k \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; R \in \mathbb{R} \;\mathbin{\operatorname{and}}\; R > 0 \;\mathbin{\operatorname{and}}\; f(t) \text{ is holomorphic on } t \in \operatorname{ClosedDisk}\!\left(z, R\right)Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Abs | Absolute value | |
| ComplexDerivative | Complex derivative | |
| Factorial | Factorial | |
| Pow | Power | |
| Supremum | Supremum of a set or function | |
| CC | Complex numbers | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| RR | Real numbers | |
| IsHolomorphic | Holomorphic predicate |
Source code for this entry:
Entry(ID("b6582a"),
Formula(Where(LessEqual(Abs(Div(ComplexDerivative(f(z), For(z, z, k)), Factorial(k))), Div(C, Pow(R, k))), Equal(C, Supremum(Abs(f(t)), ForElement(t, CC), Equal(Abs(Sub(t, z)), R))))),
Variables(f, z, k, R),
Assumptions(And(Element(z, CC), Element(k, ZZGreaterEqual(0)), Element(R, RR), Greater(R, 0), IsHolomorphic(f(t), ForElement(t, Subset(ClosedDisk(z, R)))))))