Assumptions:
References:
- https://arxiv.org/abs/math/0308086
TeX:
\log G\!\left(z + 1\right) = \frac{{z}^{2}}{4} \left(2 \log(z) - 3\right) + \frac{z \log\!\left(2 \pi\right)}{2} + \frac{1}{12} - \log(A) - \int_{0}^{\infty} \frac{x \log\!\left({x}^{2} + {z}^{2}\right)}{{e}^{2 \pi x} - 1} \, dx z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) > 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
LogBarnesG | Logarithmic Barnes G-function | |
Pow | Power | |
Log | Natural logarithm | |
Pi | The constant pi (3.14...) | |
Integral | Integral | |
Exp | Exponential function | |
Infinity | Positive infinity | |
CC | Complex numbers | |
Re | Real part |
Source code for this entry:
Entry(ID("b64782"), Formula(Equal(LogBarnesG(Add(z, 1)), Sub(Sub(Add(Add(Mul(Div(Pow(z, 2), 4), Sub(Mul(2, Log(z)), 3)), Div(Mul(z, Log(Mul(2, Pi))), 2)), Div(1, 12)), Log(ConstGlaisher)), Integral(Div(Mul(x, Log(Add(Pow(x, 2), Pow(z, 2)))), Sub(Exp(Mul(Mul(2, Pi), x)), 1)), For(x, 0, Infinity))))), Variables(z), Assumptions(And(Element(z, CC), Greater(Re(z), 0))), References("https://arxiv.org/abs/math/0308086"))