Fungrim home page

Fungrim entry: b64782

logG ⁣(z+1)=z24(2log(z)3)+zlog ⁣(2π)2+112log(A)0xlog ⁣(x2+z2)e2πx1dx\log G\!\left(z + 1\right) = \frac{{z}^{2}}{4} \left(2 \log(z) - 3\right) + \frac{z \log\!\left(2 \pi\right)}{2} + \frac{1}{12} - \log(A) - \int_{0}^{\infty} \frac{x \log\!\left({x}^{2} + {z}^{2}\right)}{{e}^{2 \pi x} - 1} \, dx
Assumptions:zC  and  Re(z)>0z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) > 0
References:
  • https://arxiv.org/abs/math/0308086
TeX:
\log G\!\left(z + 1\right) = \frac{{z}^{2}}{4} \left(2 \log(z) - 3\right) + \frac{z \log\!\left(2 \pi\right)}{2} + \frac{1}{12} - \log(A) - \int_{0}^{\infty} \frac{x \log\!\left({x}^{2} + {z}^{2}\right)}{{e}^{2 \pi x} - 1} \, dx

z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) > 0
Definitions:
Fungrim symbol Notation Short description
LogBarnesGlogG(z)\log G(z) Logarithmic Barnes G-function
Powab{a}^{b} Power
Loglog(z)\log(z) Natural logarithm
Piπ\pi The constant pi (3.14...)
Integralabf(x)dx\int_{a}^{b} f(x) \, dx Integral
Expez{e}^{z} Exponential function
Infinity\infty Positive infinity
CCC\mathbb{C} Complex numbers
ReRe(z)\operatorname{Re}(z) Real part
Source code for this entry:
Entry(ID("b64782"),
    Formula(Equal(LogBarnesG(Add(z, 1)), Sub(Sub(Add(Add(Mul(Div(Pow(z, 2), 4), Sub(Mul(2, Log(z)), 3)), Div(Mul(z, Log(Mul(2, Pi))), 2)), Div(1, 12)), Log(ConstGlaisher)), Integral(Div(Mul(x, Log(Add(Pow(x, 2), Pow(z, 2)))), Sub(Exp(Mul(Mul(2, Pi), x)), 1)), For(x, 0, Infinity))))),
    Variables(z),
    Assumptions(And(Element(z, CC), Greater(Re(z), 0))),
    References("https://arxiv.org/abs/math/0308086"))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC