Assumptions:
TeX:
\log G\!\left(1 - z\right) = \log G\!\left(1 + z\right) - \log\!\left(2 \pi\right) z + \int_{0}^{z} \pi x \cot\!\left(\pi x\right) \, dx
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \left(-\infty, -1\right] \cup \left[1, \infty\right)Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| LogBarnesG | Logarithmic Barnes G-function | |
| Log | Natural logarithm | |
| Pi | The constant pi (3.14...) | |
| Integral | Integral | |
| CC | Complex numbers | |
| OpenClosedInterval | Open-closed interval | |
| Infinity | Positive infinity | |
| ClosedOpenInterval | Closed-open interval |
Source code for this entry:
Entry(ID("b6017f"),
Formula(Equal(LogBarnesG(Sub(1, z)), Add(Sub(LogBarnesG(Add(1, z)), Mul(Log(Mul(2, Pi)), z)), Integral(Mul(Mul(Pi, x), Cot(Mul(Pi, x))), For(x, 0, z))))),
Variables(z),
Assumptions(And(Element(z, CC), NotElement(z, Union(OpenClosedInterval(Neg(Infinity), -1), ClosedOpenInterval(1, Infinity))))))