Fungrim home page

Fungrim entry: b5a382

Bn=exp ⁣(((00)(01)(0N)(10)(11)(1N)(N0)(N1)(NN))IN+1)(n+1,1)B_{n} = {\exp\!\left(\displaystyle{\begin{pmatrix} {0 \choose 0} & {0 \choose 1} & \cdots & {0 \choose N} \\ {1 \choose 0} & {1 \choose 1} & \cdots & {1 \choose N} \\ \vdots & \vdots & \ddots & \vdots \\ {N \choose 0} & {N \choose 1} & \ldots & {N \choose N} \end{pmatrix}} - I_{N + 1}\right)}_{\left(n + 1, 1\right)}
Assumptions:NZ0  and  n{0,1,,N}N \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; n \in \{0, 1, \ldots, N\}
TeX:
B_{n} = {\exp\!\left(\displaystyle{\begin{pmatrix} {0 \choose 0} & {0 \choose 1} & \cdots & {0 \choose N} \\ {1 \choose 0} & {1 \choose 1} & \cdots & {1 \choose N} \\ \vdots & \vdots & \ddots & \vdots \\ {N \choose 0} & {N \choose 1} & \ldots & {N \choose N} \end{pmatrix}} - I_{N + 1}\right)}_{\left(n + 1, 1\right)}

N \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; n \in \{0, 1, \ldots, N\}
Definitions:
Fungrim symbol Notation Short description
BellNumberBnB_{n} Bell number
Expez{e}^{z} Exponential function
Binomial(nk){n \choose k} Binomial coefficient
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Range{a,a+1,,b}\{a, a + 1, \ldots, b\} Integers between given endpoints
Source code for this entry:
Entry(ID("b5a382"),
    Formula(Equal(BellNumber(n), Item(Exp(Sub(Matrix(Binomial(i, j), For(i, 0, N), For(j, 0, N)), IdentityMatrix(Add(N, 1)))), Tuple(Add(n, 1), 1)))),
    Variables(N, n),
    Assumptions(And(Element(N, ZZGreaterEqual(0)), Element(n, Range(0, N)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC