Assumptions:
TeX:
B_{n} = {\exp\!\left(\displaystyle{\begin{pmatrix} {0 \choose 0} & {0 \choose 1} & \cdots & {0 \choose N} \\ {1 \choose 0} & {1 \choose 1} & \cdots & {1 \choose N} \\ \vdots & \vdots & \ddots & \vdots \\ {N \choose 0} & {N \choose 1} & \ldots & {N \choose N} \end{pmatrix}} - I_{N + 1}\right)}_{\left(n + 1, 1\right)}
N \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; n \in \{0, 1, \ldots, N\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| BellNumber | Bell number | |
| Exp | Exponential function | |
| Binomial | Binomial coefficient | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| Range | Integers between given endpoints |
Source code for this entry:
Entry(ID("b5a382"),
Formula(Equal(BellNumber(n), Item(Exp(Sub(Matrix(Binomial(i, j), For(i, 0, N), For(j, 0, N)), IdentityMatrix(Add(N, 1)))), Tuple(Add(n, 1), 1)))),
Variables(N, n),
Assumptions(And(Element(N, ZZGreaterEqual(0)), Element(n, Range(0, N)))))