Assumptions:
TeX:
\mathop{\operatorname{solutions}\,}\limits_{x \in \mathbb{C}} \left[T_{n}\!\left(x\right) = 1\right] = \left\{ \cos\!\left(\frac{2 k}{n} \pi\right) : k \in \{0, 1, \ldots \left\lfloor \frac{n}{2} \right\rfloor\} \right\}
n \in \mathbb{Z}_{\ge 1}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ChebyshevT | Chebyshev polynomial of the first kind | |
| CC | Complex numbers | |
| SetBuilder | Set comprehension | |
| ConstPi | The constant pi (3.14...) | |
| ZZBetween | Integers between a and b inclusive | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("b5a25e"),
Formula(Equal(Solutions(Brackets(Equal(ChebyshevT(n, x), 1)), x, Element(x, CC)), SetBuilder(Cos(Mul(Div(Mul(2, k), n), ConstPi)), k, Element(k, ZZBetween(0, Floor(Div(n, 2))))))),
Variables(n),
Assumptions(Element(n, ZZGreaterEqual(1))))